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Abstract

Coordination protocols help programmers of distributed

systems reason about the effects of transactions on the

state of the system, but they’re not cheap. Coordination

protocols may involve multiple rounds of communica-

tion, which can hurt system responsiveness. There ex-

ist many efforts in distributed computing for managing

the coordination-performance trade-off. More recent is

a line of work that characterizes the class of workloads

for which coordination is not necessary for consistency:

namely, logically monotonic programs [9]. In this paper,

we present a case study of logical monotonicity in work-

loads typical to computational biology. We leverage the

Bloom language to write efficient distributed programs,

and compare their performance to equivalent programs

written in UPC++, a popular language for writing dis-

tributed programs. Additionally, we leverage Bloom’s

analysis tools to identify points-of-coordination, and use

our own experience using Bloom to recommend some

higher-level abstractions for users without strong dis-

tributed computing backgrounds.

1 Introduction

The rapid rise of cloud computing in recent years has

brought exciting new challenges in the area of program-

ming languages. The overarching question is how we

can make cloud programming easier, and thus make the

cloud accessible to a wider range of applications. The

Bloom language is one of the leading efforts in this direc-

tion [2]. Bloom is a language for disorderly distributed

programming based on the principles of the CALM (con-

sistency as logical monotonicity) theorem to guide coor-

dination. The CALM theorem states that coordination

avoidance is possible when programs are associativity,

commutative, and idempotent. The ability to implement

an application according to these properties would nat-

urally lead to a coordination-free implementation that

would take greater advantage of cloud computing.

We validate some of the assumptions of Bloom by ask-

ing the following questions: First, how common are log-

ically monotonic programs in the wild? Specifically, in

the area of computational biology. And second, does

merely knowing where the coordination-points lie in a

non-monotonic program help us rewrite the program to

move coordination off the critical path or otherwise im-

prove performance? In this work, we borrow an appli-

cation from computational biology (k-mer counting) and

implement it in Bud (Bloom Under Development) and

compare such an implementation with a standard UPC++

implementation. In addition, we reflect on the design of

the probabilistic data structure count min sketch to reach

a more space-efficient implementation.

Our work demonstrates that the assumptions of Bloom

do in fact hold in practice, and Bloom is suitable for sci-

entific computing. Additionally, we leverage our experi-

ence using Bloom to propose some changes and a higher-

level abstraction, one that is more use-friendly to pro-

grammers without strong distributed computing back-

grounds. In sum, the second core contribution of this

paper is “BuDDI”, an enhanced version of Bud using

Distributed Data Independence (DDI). BuDDI hides the

challenges of distributed computing such as load balanc-

ing, data locality, and fault tolerance from the program-

mer so that even a novice programmer can take advan-

tage of distributed computing. This is critical as the ex-

plosion of data from many domains in recent years makes

distributed computing a necessity rather than a commod-

ity. BuDDI uses the concept of global state and achieves

the same goal of Bud in terms of coordination with com-

parable performance, while logically using global tables

instead of local tables.

The paper is organized as follows. Section 2 describes

the key global table concept in BuDDI and how it in-

fluences the design of BuDDI. In Section 3 we describe

another key construct, the iterator, while in Section 4 we

argue for a new design of the Nil concept for cloud pro-

gramming. Section 5 illustrates in detail the implemen-
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tation of the k-mer counting case study as well as the

design of the count min sketch, which is a probabilistic

data structure used for k-mer counting. Finally, Section 6

summarizes our conclusions and future work.

2 Global Tables in BuDDI

In Bud, each worker can only read from and write to its

own tables; communication between workers is explic-

itly managed through channels. By restricting tables to

strictly local visibility, Bud ensures that communication

is only explicit when instructed by the developer, and is

always asynchronous. That is, a table update never trig-

gers expensive consensus or communication protocols.

From our perspective, these design decisions make the

Bud programmer responsible for both:

1. The efficient performance of distributed comput-

ing: load balancing, straggler mitigation, data lo-

cality, resource disaggregation, auto-scaling, etc.

2. The intended behavior of distributed computing:

fault tolerance, fault detection, reliable communi-

cation, causal delivery, etc.

By allowing the compiler and runtime to manage the

data placement and communication of tuples stored in

global tables, we significantly reduce the burden on the

programmer. By supporting global tables, we empower

the compiler and runtime to manage caching, replica-

tion, sharding, and other data allocation decisions. With

a global table abstraction, the runtime environment can

use online statistics and metadata to reorganize data as

needed for latency, throughput, or reliability. In this sec-

tion we will show that it is possible to provide a global

table abstraction without sacrificing the consistency and

performance expected from Bloom languages. In this

work, we rely heavily on the work of CRDTs (conflict-

free replicated data types) for inspiration [11].

2.1 Keep CALM and Merge Lattices

In BuDDI, the global tables are CRDTs [11]. This means

that when a programmer inserts a tuple into a global ta-

ble, the insertion succeeds immediately and the new tu-

ple is shared asynchronously. This ensures that BuDDI

workers remain responsive even in the presence of net-

work partitions. The nature of CRDTs ensures that con-

current updates are eventually resolved. A BuDDI pro-

grammer statically specifies the CRDT type of global ta-

bles, which can be:

• G-Set: Grow-only set.

• 2P-Set: Two-phase set comprised of positive and

negative sets, each of which is a G-Set.

• LWW-Set: Last-writer-wins set represented as a

timestamped 2P-Set.

• MV-Set: Multi-value set, a dynamo-esque 2P-Set.

By statically defining legal operations on global tables

in advance, the developer enables the compiler and run-

time to avoid unwanted coordination. G-Sets are coor-

dination free on non-monotonic queries, and may wait

to receive all tuples before computing a non-monotonic

query. 2P-Sets may have to wait to receive all tuples in

both the positive and negative sets to service a monotonic

read. The same coordination requirement applies when

expressing equivalent computation in Bud, such as in the

shopping cart example at checkout [2].

The reader should note that tuples in global tables (i.e.

CRDTs) are not necessarily replicated by default. The

decision whether to replicate (or cache or shard) depends

on the programmer’s service-level goals and is a cus-

tomizable target for the compiler and runtime to hit.

2.2 Compile-Time Coordination

Whenever a Bud programmer organizes data such that

the tuples are hash or range partitioned along the GROUP

BY columns, the workers may compute aggregates with-

out communication. We refer to this communication-

avoiding coordination strategy as “compile-time coordi-

nation” because the programmer implicitly and statically

informs every worker that data stored at other workers is

irrelevant for the computation of the aggregate. We will

next show how the BuDDI compiler can manage data al-

location to exploit compile-time coordination automati-

cally in global tables.

Explicit hash or range partitioning of data might be an

easy task for Bud programmers, but fixed data partition-

ing logic prevents the runtime from adapting on the fly to

changes in the number of workers, per-worker processing

rate, and network conditions. In addition, the distribution

of a data set is not always known in advance by the devel-

oper. This could lead to serious load balancing problems

if the data is skewed. Global tables allow the BuDDI

compiler to parse the query to make data distribution de-

cisions and inject switch operators into the IR so that the

runtime can dynamically detect and adapt to changes.

For example, the data may be initially partitioned in a

range, but after a skew is observed, the operators in the

IR can switch to round-robin partitioning and inform the

system of the need for communication-based coordina-

tion. Such adjustments are not easy to express with only

local tables and channels, but they follow naturally from

the semantics of global tables based on CRDTs.

In Section 5.2, we show a k-mer counting implemen-

tation in BuDDI that uses a global table of type G-Set,

and relies solely on compile-time coordination.
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2.3 One-Shot Fixed Point Computation

Consider how a Bud programmer would remove items

from a shopping cart:

shopping cart := shopping cart - bad items (1)

Because shopping cart appears on the left hand side

and right hand side of the assignment, this is a recursive

query that requires stratification: the query is evaluated

repeatedly until a fixed-point is reached [8]. It is possi-

ble to statically determine the need for stratification by

detecting cycles in the dataflow graph. As we will show

in this section, it is not necessary to execute all recursive

queries to a fix-point. Some recursive queries, such as

the one in Eq. 1, can be evaluated in one-shot.

It is possible to evaluate the recursive query in Eq. 1 in

one shot because the same query could be written using

two G-Set:

shopping cart := added items - bad items (2)

The query is no longer recursive, and it is now statically

possible to determine that the query may be safely eval-

uated in one-shot, without the need for stratification. In

fact, this query is a manual implementation of a 2P-Set,

where wanted items are added to the “pos” set and un-

wanted items are added to the “neg” set. In BuDDI, the

same query would be expressed using a 2P-Set:

shopping cart := 2P Set(‘pos’, ‘neg’)

...

query(shopping cart)

(3)

If the semantics of a table provide the proper fit for

a 2P-Set, the programmer benefits from the following

advantages when entering the table as a 2P-Set:

1. One-Shot Fixed-Point Computation: The runtime

evaluates the contents of the table safely in one step.

2. Async Garbage Collection: The runtime knows that

it may safely delete elements from the pos-set iff it

deletes the corresponding item from the neg-set.

3. Compile-Time Coordination: The compiler knows

that it can make data allocation decisions such that

tuples in the same group are on the same worker in

both the pos-set and the neg-set. In other words,

the runtime could check the neg-set only at the lo-

cal worker without communication and know if the

tuple in the pos-set was deleted.

2.4 Zero-Knowledge Overwrite

As our reader probably already knows, the neg-sets of

2P-Set are tombstones. Once a tuple is added to the

neg- set, the same tuple can never be added to the 2P-Set

again. Such a restriction violates the semantics of the set

and makes it difficult or impossible to implement stateful

applications. A workaround for achieving stateful ex-

ecution with CRDTs is to append a universally unique

identifier (uuid) to each tuple. This way, an object that

has been removed from the 2P-Set can be added back

with a new uuid. From now on we will refer to a 2P-Set

which models the set semantics as True-Set. True-Set

supports add, remove, add after remove, and update.

An advantage of the uuid approach is that it is possi-

ble to add tuples to a True-Set without coordination,

since the probability of collisions guaranteed by crypto-

graphically secure random number generators is negligi-

ble. This quality we call zero-knowledge insertion, be-

cause a worker may insert tuples into True-Set without

knowing the content stored in replicas.

However, the uuid approach does not support zero-

knowledge deletion or update. To update the contents of

an object stored in a True-Set , the worker must read

the contents of the replicas to learn the uuid of the object.

Blindly deleting the object could result in an anomaly

where the new tuple is deleted because the messages may

be reordered. Consequently, the delete operation must be

parameterized by the uuid of the intended object and the

request for the uuid must be served synchronously.

Using timestamps instead of uuid allows the support

of updates and deletions with zero knowledge (in addi-

tion to insertions) for True-Set. The True-Set imple-

ments a variant of Last-Writer-Wins (LWW) or Multi-

Value-Set (MV) to control concurrency. For example, a

True-Set implementing LWW would report the object

with the latest timestamp. Outdated versions of the ob-

ject with old timestamps would be ignored or garbage

collected. A worker could delete an object from the

True-Set without a synchronous read by inserting the

object with a later timestamp into the tombstone. If the

timestamp of the object in the tombstone is greater than

all the timestamps of the versions of that object in the

pos-set, then the object is considered deleted.

Clock synchronization is not exactly a coordination-

free affair, but such is the cost of sacrificing commutativ-

ity in CRDTs and imposing order in the cloud.

3 Iterators

As global tables are to local tables, so are iterators to

channels. In this section, we will show that iterators are

language constructs that can increase the declarativity of

Bloom languages, especially with respect to stream or

unstructured data processing.

3.1 Reading Big Files

In early 2019, it was announced that a black hole had

been photographed for the first time [1]. Soon after,
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images of Dr. Katie Bouman, standing behind several

stacks of hard drives, began circulating on Twitter. The

data needed to map the black hole weighed a total of 4.5
petabytes. The question is, how can Bloom languages

and the cloud in general even read such large files?

Database Management Systems can sort files of any

size even with low memory specs. At the highest level,

the key is to process the file incrementally, bringing it

into memory one chunk at a time, and keeping track of

the work that remains to be done. Most of this behavior

is provided by the iterator abstraction. The caller invokes

next, and the iterator returns a tuple or group of tuples

(chunk), for processing. The iterator ensures that the next

chunk of work to be processed by the caller.

One approach for managing chunk size is to use as

many chunks as there are workers—to enable high-

throughput reads without requiring coordination. Un-

fortunately, this approach is vulnerable to stragglers and

cannot adapt on-the-fly to workers that enter or leave the

workpool by default. A workaround is to use a strategy

similar to that used in MapReduce to allow the number

of chunks to be much larger than the number of work-

ers [6]. Chunks are assigned to workers for delivery as

they complete work. Faster workers do more work than

slower workers. When new workers join, they can be as-

signed work at any time. If a worker fails or leaves the

group, data they have completed is not reassigned, and

data they have not completed is returned to the pool of

pending work.

3.2 Exactly-Once Semantics

At least once delivery under set semantics is exactly-once

semantics, because sets filter duplicates. But as we dis-

cussed in Section 2.4, we have reason to give the same

entity more than one uuid, to enable re-insertion after

deletion from a 2P-Set.

The solution then is to give each data unit (e.g. tuple)

two identifiers: one uuid identifies the token (e.g. the

byte-offset from the start of the file); the second uuid

identifies the use of the token. Thus, an object that gets

re-inserted to a 2P-Set would have the same token-uuid

as the one that is in the tombstone, but it would have a

different use-uuid. We believe it’s possible to statically

assign token-uuids to units of data without coordination,

such as when we stamp each k-mer with its offset from

the start of the file. Use-uuids are assigned at runtime

and may use either uuids or timestamps, as discussed in

Section 2.4,

With a token-uuid and use-uuid, it’s possible to exploit

at-least-once delivery on CRDT True-Sets to achieve

exactly-once semantics. All this with the benefits of

auto-scaling to workers entering or leaving the work

group, or workers speeding up and slowing down.

4 Nil In The Cloud

In developing BuDDI and implementing our case study

in both BuDDI and Bud in the following section, the

question arises as to how the programmer would interpret

the vairable Nil. In particular, the question is whether

Nil tells us that the value does not exist for all queries

and thus requires global coordination, or whether it tells

us that the local worker is unable to find it. The latter be-

havior is more appropriate for monotonic programming;

although it might introduce anomalies, it can maintain

responsiveness during a network partition.

One could argue that the Nil concept is an inherited

appendage from the monolithic computer era. Here we

argue that for cloud programming we should rethink the

Nil concept as having not one but two values: either DNE

(“does not exist”, which is a global assertion) or IDK (“I

don’t know”, which is a local assertion). If the network

is healthy and the data has been partitioned so that coor-

dination is free or inexpensive (Section 2.2), the stronger

property is considered and DNE is returned. Otherwise,

IDK is returned. We believe that DNE and IDK are suf-

ficiently well understood by programmers to be useful

boolean primitives. For example, given a DNE, you could

execute a block of code, whereas given a IDK, you would

perform some other operation, such as retry, crash, sleep,

or guess and apologize.

In Section 5 we will see how the Nil concept is not

currently implemented in Bud and how its implementa-

tion would give the programmer more flexibility.

5 Case Study: K-mer Counter

A common computation in Computational Biology is to

count the frequency of fixed length sequences known as

k-mers. The k-mer histogram that we obtain as a result

is valuable for understanding the distribution of biologi-

cal subsequences and for profiling genomic and metage-

nomic data. For example, we may be interested in sub-

sequences that occur within a certain interval or above a

certain threshold.

The k-mer counting step often takes a large part of

the total application runtime and it is a key computa-

tion within popular tools for taxonomic mapping [12],

metagenome classification [4], genome assembly [10].

The k-mer count is arguably a simple calculation, but

its efficient implementation is anything but simple. This

problem has received much attention as an important tar-

get for shared memory parallelism. As data sets grow

faster and faster, distributed memory parallelization is

becoming more and more important. Nevertheless, the

irregularity of the input data makes k-mer counting a dif-

ficult problem for distributed memory parallelization. In

particular, the k-mer distribution over biological input
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data is not fixed and can only be determined at runtime.

5.1 Implementation

In this work, we implement a toy version of the k-mer

counting kernel in Bud and compare it to a UPC++ im-

plementation, which resembles a more standard way of

implementing this computation. UPC++, similarly to

Bud, makes use of asynchronous communication. From

a high level perspective, the main difference between the

two codes is that the implementation based on Bud must

follow Bloom’s rules of monotony and idempotency.

UPC++ UPC++ [3] is a C++ library supporting Par-

titioned Global Address Space (PGAS) programming.

UPC++ is suited for implementing complex distributed

data structures where communication is irregular or fine

grained. The main abstractions in UPC++ are: (a) global

pointer to improve locality, (b) asynchronous remote pro-

cedure call (RPC), and (c) futures.

Listing 1 illustrates the key implementation for the

UPC++ version of k-mer counter. The k-mer counter

materializes as a distributed hash table divided by keys,

where k-mers are keys and their frequencies are values.

The program first parses the input data in parallel, so that

each processor has a part of the input sequences. Each

processor parses its local sequences in k-mers and deter-

mines which k-mers remain local and which must be sent

to another processor based on a hash function. When a

processor receives incoming data from other processors,

it updates its local partition of the k-mer hash table by in-

crementing the frequency corresponding to the received

k-mers. A given k-mer is counted by one processor and

only one processor.

Communication in UPC++ is asynchronous, and in

our implementation we use a remote procedure call to

update values in the hashmap that do not belong to the

local processor. A remote procedure call causes a proce-

dure to be executed in a different address space, encoded

like a normal procedure call, without the programmer ex-

plicitly coding the details for the remote interaction.

Listing 1: UPC++ hashmap for k-mer counting.

class DistrMap

{

/* <kmer, count> map */

using dobj_map_t =

dist_object<unordered_map<string,

int>>;

/* build empty map */

dobj_map_t local_map{{}};

/* compute owner for the given key */

int get_target_rank(const string &key)

{

return hash<string>{}(key) % rank_n();

};

void local_update(unordered_map<string,

int> &lmap, const string &key)

{

auto it = lmap.find(key);

if(it != lmap.end()) it->second++;

};

future<> populate(const string &key)

{

/* send rpc to the owner rank */

return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key)

{

/* check if key in local map */

if(lmap->count(key) == 0)

(*lmap)[key] = 1;

/* update local value */

else local_update(*lmap, key);

}, local_map, key);

};

};

Bud Listings 2–4 show different implementations that

we developed for our case study in Bud. In particular, the

implementation in Listing 3 uses domain-specific knowl-

edge to optimize the memory footprint.

Counting subsequences is monotone by nature, be-

cause once you have seen a k-mer instance, the k-mer

count can only increase or remain unchanged. One might

first think to use a lmap as a local partition, where k-mers

are the keys and values are lmax lattices, since the k-mer

count can only be incremented and lmax is defined as

an integer that can only increment. However, the default

merge function of lmax is in fact the maximum between

two entries, not the sum as we would wish. It is not pos-

sible to override the merge function or create a custom

lattice that uses sum as the merge function because sum

is not idemponent.

The computation can be made idempotent by replac-

ing lmax with lset in the local partition. In this im-

plementation, each k-mer instance in the local partition

is assigned a unique identifier. If ATAG occurs twice in

the input data set, the corresponding lset in the local

lmap stores two unique identifiers. Once the computa-

tion is complete, we perform a local count of lset and

display the k-mer frequency for each k-mer in the input

data set. In this work, we refer to this implementation as

Implementation A (Listing 2).

Listing 2: Bud k-mer counting: Implementation A.

This implementation is not memory efficient because it
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stores as many uuid as k-mer instances.

# parse file and store sequences in an array

class DNA

def readseq(myinput)

sequences = Array.new

ParseFasta::SeqFile.open(myinput).each_record

do |rec|

sequences.push(rec.seq.upcase)

end

end

def kmers(sequences, k)

subsequences = Hash.new

for item in sequences do

i = 0

while i < item.length-k+1 do

subsequences[SecureRandom.uuid] =

item[i..k+i-1]

i += 1

end

end

karray = Array.new

karray = subsequences.to_a

end

end

class CountKmer

include Bud

state do

scratch :kmer, [:uuid, :seq]

scratch :receive, [:seq, :uuid]

scratch :leave, [:seq, :uuid, :owner]

lmap :local

lmap :incoming

lmap :counter

table :result

channel :msg, [:seq, :uuid, :@addr]

end

bloom :ownership do

# ip port based on sequence

owner = hash(t.seq) % worldsize

leave <= kmer {|t| [t.seq, t.uuid, owner]}

msg <~ leave do |seq, uuid, owner|

[seq, uuid, owner]

end

end

# update local set with incoming data

bloom :insert do

receive <= msg do |seq, uuid, owner|

if owner == ip_port

[seq, uuid]

end

end

# merge incoming kmer into local map

incoming <= receive {|t| {t.seq =>

Bud::SetLattice.new([t.uuid])}}

local <= incoming

counter <= {ip_port => local}

end

bloom :count do

result <= counter.to_collection do

|owner, m|

[owner, m.to_collection do |k, v|

[k, v.size]

end

]

end

end

end

Implementation A is monotone and idempotent, how-

ever, it poses some concern about the memory con-

sumption. In a medium-sized genome data set, we

have billions of k-mers and some of these can occur

hundreds of times in the input data set. Therefore,

storing an identifier for each k-mer instance looks ex-

tremely inefficient from a memory standpoint. Fortu-

nately, domain-specific knowledge helps us in the design

of our Implementation B (Listing 3). In general a user

is only interested in subsequences that occur within a cer-

tain interval or below/above a certain threshold. This in-

formation can be elegantly integrated into the Bud im-

plementation using custom lattices.

Listing 3: Bud k-mer counting: Implementation B.

This implementation uses domain-specific knowledge

to save memory and stores uuid only up to a cer-

tain threshold. Implementation B uses a custom lattice

Bud::BuddySetLatticewhich is a modified version of

the standard Bud::SetLattice reported in Listing 4.

class CountKmer

include Bud

[...]

# update local set with incoming data

bloom :insert do

[..]

# merge incoming kmer into local map

incoming <= receive {|t| {t.seq =>

Bud::BuddySetLattice.new([t.uuid])}}

local <+ incoming

counter <+ {ip_port => local}

end

[...]

end

For example, if we are only interested in subsequences

that occur above a certain threshold, we can create a cus-
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tom lset where our merge function computes the union

of two sets only if the reference set has not yet reached

the custom threshold (Listing 4). The threshold is com-

monly much smaller than the maximum frequency of

high-frequency k-mers, making Implementation B much

more memory efficient than Implementation A.

Listing 4: Bud::BuddySetLattice is identical to the

standard lset except for its merge function that uses

domain-specific knowledge to avoid wasting memory.

THRESHOLD = 10

class Bud::BuddySetLattice < Bud::Lattice

wrapper_name :buddylset

[...]

def merge(i)

if @v.size < THRESHOLD

wrap_unsafe(@v | i.reveal)

else

wrap_unsafe(@v)

end

end

[...]

end

Before we approached the solution with a custom lat-

tice, we tried an implementation with native lattices. In

Listing 5 we use a naive lset lattice as the value in

the lmap instead of the custom Buddylset in Listing 4.

In this case we want to add the received k-mer to the

local incoming lmap only if we have not yet reached

the threshold for this k-mer key. The first error we en-

countered in implementing this version was a stratifi-

cation error, because when we merged incoming into

local we used <= instead of <+. In this case, incoming

merges with local, which in turn is used to calculate

incoming. To fix this error, we had to defer the merg-

ing of incoming into local with <+ until the next time

step. The stratification problem is solved at this point,

but we have the problem that local may not contain the

key we are looking up, and this caused a runtime error

complaining that it cannot find the key. Here, we wonder

if it would be possible to return a Nil value when a key

is missing, rather than causing a runtime error. In Sec-

tion 4, we briefly discussed how introducing two values

(DNE and IDK) for the Nil concept would enable us to

implement this implementation of k-mer counting with-

out using a custom lattice. In particular, returning a local

IDK would be sufficient in this case, since each k-mer

(key) exists on one and only one process.

Listing 5: Bud k-mer counting: Implementation B us-

ing only native types and related error.

THRESHOLD = 10

class CountKmer

include Bud

[...]

# update local set with incoming data

bloom :insert do

[..]

# merge incoming kmer into local map

incoming <= receive {|t| {t.seq =>

Bud::SetLattice.new([t.uuid])} if

(local.at(t.seq).size < THRESHOLD)}

local <+ incoming

counter <+ {ip_port => local}

end

[...]

end

5.2 BuDDI

In this section, we demonstrate a hypothetical implemen-

tation of the k-mer Counting algorithm in BuDDI. We

use this example to demonstrate the use of G-Sets (a

CRDT, or global table), and iterators (e.g. the call to

open the file). The take-away from this subsection is

that (i) BuDDI programs are simple for Bloom program-

mers to write and understand, (ii) that their semantics are

clear and unambiguous, and (ii) that the language is suf-

ficiently declarative to allow for acceptable performance

with the aid of an intelligent compiler working in concert

with a specialized runtime. We leave both as future work.

For reference on achievable performance and semantics,

the reader may want to refer back to Sections 2 and 3.

The BuDDI programmer writes the k-mer counting

program as a SQL query with aggregation over a global

table. In this case, the global table is called kmers, and it

is implemented by a G-Set (or grow-only set). Aggrega-

tion, when exact, is a non-monotonic operation, but the

runtime may begin processing the query on-the-fly, and

either report intermediate results or withhold them until

the end as preferred by the user.

BuDDI executions allow for workers to join or leave

the worker pool on-the-fly. New workers are added with

the register worker method which monotonically in-

serts the worker’s metadata into a channel. BuDDI also

uses an iterator (e.g. open in read dna file) to read

the potentially massive file in parallel. As we discussed

in Section 3. The iterator is able to estimate network

conditions and worker performance by the rate at which

workers request data from the iterator. Thus, with the it-

erator, BuDDI is able to detect failures (a worker stops

requesting data) and adapt on-the-fly to slowdowns.

The BuDDI compiler statically recognizes that this

workload is hash-partitionable on the seq column of the

kmers table, and may rendezvouz tuples with match-

ing token- uuids (no use-uuid required, since we are in-

serting into a G-Set), into the same worker, so no com-

munication is required to compute an aggregate. If the
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Listing 6: BuDDI k-mer counting.

from buddy import Channel, GSet, View

from buddy import uuid, init

worker = Channel(key=’@addr’, value=’file_uri’)

kmers = GSet(key=’uuid’, value=’seq’)

result = View(query="""

SELECT seq, COUNT(*)

FROM kmers

GROUP BY seq

""")

def read_dna_file(kmer_stream =

open(worker.file_uri, req_id=uuid(),

addr=worker.addr, mode=’char[4]’)):

global kmers

kmers += {(uuid(), kmer) for kmer in

kmer_stream}

@init

def register_worker(address: ’str’,

dna_file_uri: str):

global worker

worker += {(address, dna_file_uri)}

runtime does not replicate the data stored in the kmers

CRDTs, then this execution and schedule achieves com-

parable performance to the hand-tuned Bud implementa-

tion, with all the additional benefits of declarativity.

5.3 Count Min Sketch Design

Count min sketch [5] is a probabilistic data structure that

serves as a frequency table of events in a stream of data.

It is usually implemented as a data structure like a ma-

trix, where h rows represent your hash functions and m

columns represent the ranges, where m is smaller than the

number of k-mers because it is a sublinear data structure.

When inserting a k-mer x, this is hashed with the h differ-

ent hash functions and the counter in the corresponding

column of the matrix calculated as hashed value mod-

ule m is incremented. And then we take the minimum

count over the h cells in the matrix where this k-mer was

hashed. In practice, m is related to the actual number

of k-mers, and usually people use the HyperLogLog al-

gorithm [7] to estimate the cardinality of the k-mer and

chose m accordingly.

The implementation of a count-min sketch is more

complicated than that of a regular k-mer counting algo-

rithm, since the data distribution is not straightforward

and the data access pattern is not contiguous. In this pa-

per, we present two possible high-level designs and de-

scribe their current shortcomings. The first design con-

sists of the composition of standard Bloom lattices while

the second design is based on a custom lattice that is

more similar to the original data structure.

Using standard lattices, we can use a lset of size m,

where each entry is a lmap of size h, where the key is

the hash function id and the value is a lset of unique

identifiers of k-mers; when merged, the lset increases

its size by adding the corresponding identifier (uuid) to

the entry [m]→[h]→[uuid]. In this case, the data dis-

tribution could be based on the m ranges, where for P

processes each process has m/P entries to take care of.

This distribution is relatively easy to implement, but the

irregular data access pattern makes it more complicated

to implement the min operator, because the h entries on

which we want to perform the operation could poten-

tially belong to h different processes. This data structure

and distribution requires cross-process coordination, and

the communication pattern resembles an MPI Reduce or

Allreduce collective communication. The implemen-

tation of collective communication in BUD will remain

as future work. This first design trades coordination for

memory usage, since each process has only one partition

of the entire data structure, but may require coordination

of all processes to reveal the final result.

A second design, based on a custom lattice, results in

the opposite compromise: memory usage to reduce coor-

dination. The custom lattice is very similar to the original

data structure, i.e. a h×m matrix A (e.g. two Ruby Array

structures), where each A(i, j) entry is a k-mer unique

identifier lset. In this case, the distribution may be the

same as we saw in the regular k-mer counting algorithm,

i.e. each k-mer is hashed to a single process, and this

process calculates the h hash function on this k-mer and

updates the corresponding matrix entries. Here each pro-

cess has a local copy of the entire matrix, and the merge

operation is the lset merge operation applied to each

of the matrix entries. This means that consistency is en-

sured by an analysis at application level, which resolves

write conflicts with a shared state. This design allows

easier distribution and less coordination, but the memory

consumption is higher because each process has a local

copy of the entire data structure.

The use of identical copies of the matrix on each pro-

cess justifies the design and use of BuDDI and its logi-

cally global tables. In BuDDI, the runtime may do repli-

cation or partitioning of data structures, but this is ab-

stracted for the programmer. In addition, BuDDI gives

us access to the application-side code that we can use to

learn the semantics of the application layer. The applica-

tion semantics may give BuDDI a way to resolve an ap-

parent conflict, and can therefore allow BuDDI to reach

good performance using weak consistency.
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6 Conclusion and Future Work

In this paper, we performed a case study of a represen-

tative HPC workload to evaluate the fitness of CALM

programming for computational science. In particular,

we compared a Bud implementation with a UPC++ im-

plementation and found that both are equally expressive.

Although a detailed performance comparison remains a

future work, Bud provides enough low-level control to

assume similar scaling behavior as UPC++.

However, Bud’s low-level characteristics complicate

distributed programming by offloading performance and

correctness considerations to the user. Our case study

motivated the design of BuDDI, a more declarative

Bloom language that provides Distributed Data Indepen-

dence. Our declarative abstractions rely on CRDTs and

Iterators to maintain acceptable consistency and perfor-

mance with the many benefits of declarative logic pro-

gramming. Our hope is that the design of BuDDI will

motivate our readers to work with us to implement the

compiler and runtime.

Contributions

RG worked primarily on the design of BuDDI, and dis-

cussion of Global Tables and Iterators. GG worked pri-

marily on the case study, implementation, and related

discussion of k-mer counting in Bud and UPC++. RG

and GG contributed equally to the writing of the report.

This paper is submitted in fulfillment of the require-

ments of UC Berkeley’s CS294 graduate seminar: “Pro-
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J., BINTLEY, D., ET AL. First m87 event horizon telescope re-

sults. iv. imaging the central supermassive black hole. The Astro-

physical Journal Letters 875, 1 (2019), L4.

[2] ALVARO, P., CONWAY, N., HELLERSTEIN, J. M., AND MAR-

CZAK, W. R. Consistency analysis in bloom: a calm and col-

lected approach. In CIDR (2011), Citeseer, pp. 249–260.

[3] BACHAN, J., BONACHEA, D., HARGROVE, P. H., HOFMEYR,

S., JACQUELIN, M., KAMIL, A., VAN STRAALEN, B., AND

BADEN, S. B. The upc++ pgas library for exascale computing. In

Proceedings of the Second Annual PGAS Applications Workshop

(2017), pp. 1–4.

[4] BENOIT, G., PETERLONGO, P., MARIADASSOU, M., DREZEN,

E., SCHBATH, S., LAVENIER, D., AND LEMAITRE, C. Multiple

comparative metagenomics using multiset k-mer counting. PeerJ

Computer Science 2 (2016), e94.

[5] CORMODE, G., AND MUTHUKRISHNAN, S. An improved data

stream summary: the count-min sketch and its applications. Jour-

nal of Algorithms 55, 1 (2005), 58–75.

[6] DEAN, J., AND GHEMAWAT, S. Mapreduce: a flexible data pro-

cessing tool. Communications of the ACM 53, 1 (2010), 72–77.
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